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Stability analysis should be a standard practice for testing the physical validity of phase 
equilibrium states predicted by thermodynamic models however, it is seldom used in 
routine work of experimental data modeling. Lack of stability analysis may result in 
potential modeling pitfalls or in an inadequate prediction of data. In this contribution 
the concept of stability is reviewed from a general viewpoint, showing how it applies to 
completely general cases of binary phase equilibrium, from low to high-pressure ranges. 
Graphical examples are given using excess Gibbs energy models and equations of state. 

Keyworh: Stability; phase equilibrium; tangent plane criterion; critical lines 

INTRODUCTION 

The design, simulation and optimization of equilibrium separation 
processes depend on the availability of phase equilibrium data and 
appropriate models used for correlation purposes. Experimental data 
must fulfill various requirements, particularly consistency (or data reli- 
ability) and availability in a wide temperature and pressure ranges. In 
addition to a proper fit of reliable data, the adequacy of models de- 
pends on their predictive capabilities, for which stability analysis plays 
a central role. In fact, stability analysis should be a standard practice 
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278 H. SEGURA ef al. 

for testing the physical validity of phase equilibrium states predicted or 
correlated using thermodynamic models. Excess Gibbs energy (GE) 
models in the 7-4 approach to phase-equilibrium, or equations of 
state (EOS) in the 4-4 approach, are intended for the reduction of 
experimental equilibrium data that represent global stability in well 
carried-out experiments. Although it is common practice to perform 
stability analysis in the treatment of liquid - liquid equilibrium (LLE) 
data [l] and in multiphase flash equilibrium predictions, it is not 
always so when correlating low-pressure phase equilibrium. This may 
result in potential pitfalls in the analysis of vapor - liquid equilibrium 
(VLE) data, as discussed by Wisniak et al. [2], or in solid-liquid 
equilibrium (SLE) data correlation, as pointed out by Marcilla et al. 
[3]. Testing for stability is strongly recommended also in quasi-critical 
equilibrium calculations, where multiphase equilibrium may be 
observed as a consequence of the topology of critical lines [4]. How- 
ever, it is seldom done when correlating supercritical fluid extraction 
(SFE) data by means of EOS. 

The theoretical basis of thermodynamic stability was first stated by 
Gibbs: a homogeneous phase with a given composition is stable when 
its Gibbs energy is minimum at constant temperature and pressure. 
This requirement implies, as a necessary condition, that the matrix of 
the second derivatives of the Gibbs energy with respect to the inde- 
pendent compositions be positive definite, and originates from the 
theory of local extreme points [5].  From a mathematical viewpoint, the 
condition given by Gibbs is achieved when the Gibbs energy func- 
tion of a system yields relative and absolute minima; both types of 
stationary points establish equilibrium states and are physically per- 
missible, but define two different classes of stability: 

0 Intrinsic stability, which implies that at constant temperature and 
pressure the Gibbs energy of a system is minimum, although not 
necessarily an absolute minimum, 

0 Global stability, which implies that at constant temperature and 
pressure the Gibbs energy of a system is an absolute minimum. Note 
that a global stable state satisfies intrinsic stability, which is a neces- 
sary but not suflcient condition of global stability. 

The difference between intrinsic and global stability lies on the 
stability of a given equilibrium state, where a minimum of the Gibbs 
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STABILITY ANALYSIS IN BINARY SYSTEMS 279 

energy has been achieved, with respect to small or large perturbations. 
In order to clarify these concepts it is instructive to consider the me- 
chanical analog of the Gibbs energy shown in Figure 1 where the 
spontaneous evolution of a thermodynamic system to an equilibrium 
state is analyzed. Curve ABCDE represents a possible trajectory of 
the system (represented by a ball) to an equilibrium state. Points B and 
D represent positions where the system will remain at rest, spon- 
taneously (as required for equilibrium). Any other position implies 
dynamicevolution to lower energy states. Let us now consider theequili- 
brium states B and D. If the system in state B is subject to a small 
perturbation and then allowed to evolve to an equilibrium state, it is very 
probable that it will return to the original state B. However, if it 
is subjected to large perturbations, large enough to overcame the 
energetic barrier BC, the system will evolve to point D which is a point 
of absolute minimum energy. Point B represents a position of metastable 

D 

~~ 

R 

FIGURE 1 Mechanical analog for the stability of a system and its equilibrium states. 
R represents the allowable states of the system at constant temperature, pressure and 
total mass. 
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280 H. SEGURA et al. 

equilibrium that may be broken by large perturbations and D represents 
a position of absolute equilibrium. The Gibbs energy may be considered 
as the potential energy of a thermodynamic system, and from this 
analogy it follows that global stable equilibrium states, or states of 
absolute minimum Gibbs energy, are hierarchically dominant over those 
states which yield relative minima of the Gibbs energy. Metastability 
may be observed experimentally, the barrier that stabilizes these states 
corresponds to the energy required for the nucleation of embryo phases 
once saturation conditions have been achieved [6].  Examples of these 
situations are t%e release of vapor bubbles from a saturated liquid phase 
and the generation of liquid drops during condensation. The design of 
experimental equipment and techniques should be intended to avoid 
metastability in phase equilibrium measurements, the objective being 
the experimental determination of global stable data. In fact, global 
stability is assumed (without verification) in almost every equilibrium 
data published. 

The models used for correlation purposes must reflect also the glob- 
al stability of experimental data. From a modeling viewpoint, although 
intrinsic stability may be predicted for a homogeneous phase (or for a 
phase equilibrium state), the possibility of predicting equilibrium states 
that are more stable (i.e., states which may yield lower Gibbs energy 
values), like VLE, LLE, or SLE, demands further testing to determine if 
a predicted equilibrium state represents a global minimum of the total 
Gibbs energy. 

Intrinsic and global stability differences were early recognized by 
the van der Waals school [7] when predicting gas-liquid and liquid- 
liquid critical lines with the van der Waals equation. In critical equilib- 
rium calculations the limit of intrinsic stability is always achieved 
along a critical line because the conditions for calculating the critical 
point contains this requirement. Nevertheless, the curve branches of 
calculated critical lines do not yield necessarily global stability, and 
may originate critical end points between fluid phases (as discussed by 
Van Konyenburg and Scott [4], or between solid and fluid phases [8]). 
End points constraint the global stability of critical equilibrium states, 
a common case being heteroazeotropy which limits the existence of a 
critical LLE line, because pressure (or temperature) allows the 
stabilization of a vapor phase, thus interrupting the continuity of 
critical LL immiscibility at lower pressures (or higher temperatures). 
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STABILITY ANALYSIS IN BINARY SYSTEMS 28 1 

As we have seen so far, stability analysis is directly related to a 
Gibbs energy minimization problem which, in turn, may be expressed 
in terms of thermodynamic models, at constant temperature and 
pressure. Every minimum of the Gibbs energy corresponds to an equili- 
brium state, but only the lowest value defines the most stable or the 
globally stable state of a system that is of interest for phase equilibrium 
predictions. The proper methodology for establishing unequivocally a 
global minimum of energy is the tangent plane criterion discussed by 
Baker et al. [9], because it meets global stability conditions and assures 
the necessary and sufficient conditions for an overall minimum of the 
Gibbs energy in the whole composition range. Nowadays, it is possible 
to utilize well-established methods based on the tangent plane criterion 
for performing global stability analysis together with routine equili- 
brium data treatment [lo- 121. The tangent plane criterion allows a 
simple geometrical interpretation but its numerical implementation is 
complex and continues to be a challenge for sophisticated minimization 
algorithms, particularly when considering the general case of multi- 
component heterogeneous phase equilibrium. The main difficulty, 
which remains for a robust numerical implementation of the tangent 
plane criterion, lies on the complex mathematical nature of the prob- 
lem. For example, the Gibbs energy surface may be sectionally differ- 
entiable in multiphase equilibrium (it can be also a noncontinuous 
function for particular phases), so common differential techniques for 
continuous functions cannot be applied directly. Also, in multiphase 
equilibrium, the Gibbs energy surface is a highly non-linear function of 
the composition and can exhibit a set of multiple minima, difficulting 
the precise localization of the absolute one. In spite of these difficulties, 
common cases of binary phase equilibrium allow a simple graphical 
solution of the problem using the Gibbs energy of mixing diagram, a 
technique that should be an obvious candidate for stability analysis. As 
pointed out by Radzyminski and Whiting [13], the general case of 
heterogeneous equilibrium between fluid phases of different density 
does not correspond to the typical Gibbs energy diagrams which are 
usually presented in many textbooks to illustrate the tangent plane 
criterion. This fact is particularly significant when considering a 
graphical stability analysis for binary mixtures using an EOS of the 
van der Waals type (or those derived from perturbation theories, as 
discussed by Reed and Gubbins [ 14]), or when using the y - 4 approach. 
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In this contribution the basic concepts of stability are reviewed and the 
work of Radzyminski and Whiting [13] is extended to stability analy- 
sis of multiphase binary equilibrium, yielding simple and straight- 
forward rules which can be applied for a critical assessment of data 
correlation and prediction. Examples are provided to illustrate the dif- 
ferent situations discussed. 

THEORY 

Let us start our analysis of the problem by considering a simple closed 
system that is differentially perturbed by the transfer of small amounts 
of energy in the form of work and/or heat. We will consider the evo- 
lution of the system once the energetic perturbations are stopped; state 
in which the system will spontaneously achieve equilibrium. The 
evolution to an equilibrium state can be studied using two inde- 
pendent principles of conservation: the energy balance and the entropy 
balances 

In Eq. (2) the term S,,, represents the entropy generation and will 
always be positive, as required by the Second Law of thermodynamics. 
Replacing in Eq. (1) yields 

dU = Tds - TdSgen + 6W (3) 
For quasi-static perturbations the mechanical work is given by 6 W = 
- PdV where P is the pressure of the system. Replacing in Eq. (3), 
taking into account the sign of entropy generation, yields 

dU - TdS + PdV = -Tdgen 5 0 (4) 

When a system reaches a state of equilibrium the generation term 
(which depends on gradients of pressure, temperature, and chemical 
potential) becomes zero and Eq. (4) yields 

dU-TdS+PdV 0 ( 5 )  
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STABILITY ANALYSIS IN BINARY SYSTEMS 283 

At constant temperature and pressure Eq. (4) becomes: 

d(U - TS + PV),,, 5 0 

By definition the sum U - TS+ PV = G,  the Gibbs energy G of a 
closed system, hence, at constant temperature and pressure, an iso- 
lated system will evolve to an equilibrium state when the following 
differential constant is fulfilled 

Equilibrium conditions will be met when 

dGT!p = 0 (7b) 

According to Eqs. (7) the spontaneous evolution to equilibrium of 
a closed is indicated by a reduction of its Gibbs energy. Since the 
temperature and the pressure remain constant during the equilibra- 
tion process, the evolution to equilibrium conditions is caused by non- 
zero chemical potential gradients. In addition, Eq. (7b) establishes that 
for an equilibrium state the Gibbs energy reaches an stationary point 
(maximum or minimum), for which Eq. (7a) imposes an addition- 
al constraint that is met when the equilibrium state corresponds to 
a local minimum of the Gibbs energy. Equations (7) constitute the 
necessary and suficient conditions of an equilibrium state, which are 
not necessarily a phase equilibrium condition but a homogeneous 
state where pressure, temperature and chemical potential gradients 
become zero for the whole system. The concept of stability is related 
to the specific case of phase equilibrium because of the inability of the 
system to exist as a homogeneous phase or, equivalently, due to the 
fact that the Gibbs energy is not a minimum for a homogeneous phase 
but for heterogeneous phase equilibrium. Hence, analysis of the stabil- 
ity of a homogeneous phase constitutes also an assessment of the 
possibility of a phase-equilibrium state. Equations (7) are useful for 
studying the stability analysis of a system that is constrained to dif- 
ferential perturbations and they constitute the definition of intrinsic 
stability. 

Integration of Eq. (7a) yields 
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284 H. SEGURA et al. 

According to Eq. (€9, in every spontaneous change of a system at 
constant temperature and pressure, the observed overall change of the 
Gibbs energy must be negative. Equation (8) also constitutes a sru- 
bility criteria because it constraints the possible evolution path of a 
system towards an equilibrium state. However, according to Eq. (8), 
the scale of the perturbation is arbitrary and not necessarily differential, 
so that Eq. (8) may be applied also for assessing the global stability of a 
system. 

Let us consider now the mixing process of two pure fluids at con- 
stant temperature and pressure, as shown in Figure 2. For this process 
the Gibbs energy of mixing, AG, is given by 

N 

AG = G - ni zi 
i 

(9) 

where G is the total Gibbs energy of the mixture and Gi is the Gibbs 
energy of the pure component, all evaluated at the same temperature 
and pressure. On a molar basis 

N 

AZ.=Z.-XxiZ.i  5 0 (10) 
i 

In terms of partial properties the Gibbs energy of a mixture is given 
by : 

N N 

at T ,  P at T ,  P 

unmixed A and B an homogeneous 
solution of A and B 

FIGURE 2 A mixing process. 
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STABILITY ANALYSIS IN BINARY SYSTEMS 285 

where pi is the chemical potential and G j  is the partial Gibbs energy. 
Combining Eqs. (10) and (1 1) yields: 

The constraint given by Eq. (12) expresses the principle of spon- 
taneity: mixing of fluids is possible only when the Gibbs energy of mixing 
is negative, otherwise, the pure fluids will remain immiscible and no 
homogeneous mixture will be possible. 

According to our previous arguments, Eq. (12) constitutes a con- 
straint to the stability of a mixture in a homogeneous phase and, as 
will be shown below, it has the advantage of being readily expressible 
in terms of thermodynamic models. Figures 3 to 5 illustrate typical 
situations that may be obtained for Eq. (12) when analyzing a mixture 

0.0 0.2 0.4 0.6 0.8 1 .o 
XI 

FIGURE 3 Completely miscible system. 
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0.0 0.2 0.4 0.6 0.8 1 .o 
XI 

FIGURE 4 Absolute immiscible system. 

tangent m 
XI 

FIGURE 5 Partially miscible system. 
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in a single-phase state. An example is a liquid mixture whose possible 
states may be plotted by a unique A 6  curve (this will not be so when 
considering more general cases where phases in different states, for 
example liquid and vapor, satisfy phase equilibrium conditions). Some 
composition ranges of the curves under consideration (to be indicated 
by dotted lines) may be experimentally inaccessible but, neverthe- 
less, may be predicted by models. Figure 3 illustrates a case of complete 
miscibility, for every composition a negative value of the mixing 
Gibbs energy is achieved, indicating that the mixture is a homogen- 
eous phase or, in other words, the homogeneous phase is stable for 
every possible concentration. Figure 4 represents a case of complete 
immiscibility, every concentration yields a positive value of AG/RT, 
indicating that the mixing process is impossible because it violates 
the stability constraint given by Eq. (12). In this particular case two 
phases are present, each corresponding to a pure component. Figure 5 
represents a case of partial miscibility, in spite the fact that negative 
Az/RT values are observed for the full composition range and hence, 
deserves further analysis. Inspection of Figure 5 reveals that the Ag/RT 
function has two inflection points and that the concavity of the A?;/RT 
function changes with the composition, at constant temperature and 
pressure. Let us now analyze the particular tangent M 1 - M ~  shown in 
the figure, this tangent touches the A6/RT curve at the two com- 
positions x? and 4. For these two compositions the common tangent 
intercepts at x1 = 0 and XI = 1 are: 

These intercepts are related to the partial mixing Gibbs energies and to 
the chemical potentials as follow [15] 

In Eq. (14) p ;  is the chemical potential of the pure component at 
the same temperature and pressure of the mixture. Combining with 
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288 H. SEGURA et al. 

Eqs. (1 3) and (14) gives 

According to Eqs. (15) solutions with mole fractions and 4 are 
in equilibrium or, equivalently, the phases defined by the composi- 
tions $ and 4 meet the necessary phase equilibrium conditions. Let us 
now consider a particular phase with a composition xi located bet- 
ween * and 4. As shown in Figure 6, for this phase the value of 
Ac;IRT is negative, however, the same composition has a lower value 
when located on the tangent line (point B). The AE/RT function 
represents the potential energy of thermodynamic systems and systems 
are globally stable when they have the lowest possible value of AGIRT 
at a given composition. Point A represents the Gibbs energy of a 

FIGURE 6 Ag/RT diagram characterizing the immiscibility ranges in Figure 5. 
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STABILITY ANALYSIS IN BINARY SYSTEMS 289 

homogeneous phase for the mixture while point B represents the Gibbs 
energy of two partially miscible phases of composition $ and 4, re- 
spectively, with an overall composition x; .  From an energetic view- 
point, the composition x; will favor the state with the lowest value of 
A z / R T  and it will be stable as a heterogeneous mixture of two 
immiscible phases of compositions xp and xf (point B), and not as a 
homogeneous phase (point A). In other words, a solution of com- 
position x; is unstable as a single phase, and represents a case of 
partial miscibility between two phases. The tangent line which joins x? 
and xf represents the lever rule and can be used to calculate the 
fraction of phases (Y and ($, and 

- - 
CB 

and $a== BD 
CD CD 

$" = = 

Equations (16) may be used for material balance purposes. Now, 
if a composition x; is selected, subject to x; < xy or xy > xf, then 
Eqs. (16) will yield negative values for $" and $@, indicating that 
compositions in the range x; < x? or x; > x ,  cannot represent a two- 
phase equilibrium state. Every composition x; outside of the com- 
position range CD corresponds to a homogeneous phase. A system 
that shows the behavior in Figure 6 is partially miscible, due to sta- 
bility requirements. We have mentioned before that the curve in 
Figure 6 shows inflection points where the concavity of the A z ; I R T  
curve changes sign from negative to positive. Hence, an additional 
miscibility test for a single-phase state in the entire composition range 
of a binary mixture can be obtained if the following condition is met, 
at constant temperature and pressure, 

B 

for every possible composition. Equation (17) follows from the fact 
that a system will always present instability if A z I R T  inflects. In such 
a case it will always be possible to draw a common tangent joining 
immiscible compositions. 

Next we will analyze the hierarchy of global and intrinsic stability. 
According to the latter, a system is stable if it yields a minimum of 
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Gibbs energy at constant temperature and pressure. Consider the state 
described by point A in Figure 7, which can be perturbed in many 
ways. One possibility is to unmix the original homogeneous mixture 
into two homogeneous mixtures of different compositions, such as B 
and C (a small-scale perturbation). According to the lever rule, the 
Gibbs energy of mixing of the unmixed system will be located in D 
resulting in a larger Gibbs energy. Hence, the result of the evolution 
of the system under such perturbation (B-C) will be to recover the 
original homogeneous composition given by point A. A larger per- 
turbation is illustrated by unmixing the original solution A to the 
compositions given by points E and F (common tangent). In this 
case the Gibbs energy of mixing of the unmixed system will be locat- 
ed in H where it has a lower value. By being more stable than point 
A it will remain at this point. A solution of composition A is stable 
when it is subject to small perturbations and thermodynamics laws 
allows it. .It will become unstable when the perturbations are large, 

XI 

FIGURE 7 Ac/RT diagram showing the ranges of metastability and global stability. 
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particularly since point H is the lowest Gibbs energy state among 
all the permissible mixing Gibbs energy states of the system that are 
given by the solid curve. Point A represents a case of metastability, 
i.e., a miscible state which remains stable when subjected to small 
perturbations, but becomes unstable when subject to large perturba- 
tions. It is interesting to note that it is always possible to unmix a 
homogeneous state yielding larger mixing energies, as in case B-C, if 
the composition of the homogeneous mixture meets the condition 
given by Eq. (17). However, from a global stability viewpoint, the 
common tangent may include ranges of composition in the Az/RT 
curve that will satisfy Eq. (17) but still yield lower values of the Gibbs 
function if the system becomes immiscible. A mixture having a com- 
position that satisfies Eq. (17) is intrinsically stable as a homogeneous 
phase. If the composition of such a phase is outside the range of the 
common tangent no perturbation will be able to induce immiscibility 
and the homogeneous state will be globally stable. Considering again 
composition A, we can say that a homogeneous phase of such com- 
position is intrinsically stable but not globally stable. A is inside the 
composition range of the common tangent and lower Gibbs energies 
can be achieved at  point H. The important point to realize is that 
global stability always implies intrinsic stability, but intrinsic stability 
does not imply global stability. 

Equation (1 7) may be also written as 

indicating that the Gibbs energy exhibits a positive concavity and thus, 
the stationary point of the Gibbs energy (required for an equilibrium 
state) is a minimum. But, as shown in the example given in Figure 7, 
Eq. (18) alone is unable to declare the global stability of the system 
with a given composition, when subject to large perturbations. The 
latter condition comes from the analysis of the tangent line to the 
Gibbs energy curve for the composition under study. As indicated 
before, composition A in Figure 7 exhibits intrinsic stability but not 
global stability. In addition, it is seen that the tangent at A exhibits 
composition ranges that are above the AG/RT curve, so that some 
unmixing perturbations of the mixture with composition A are 
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possible, and for which the system could evolve to states with lower ener- 
gies. Also, it can be seen that a tangent line at compositions outside 
the range E-F, where the mixture is a homogeneous phase, will 
always be below the A6IRT curve. Hence, as established by the tan- 
gent line criterion [9], a mixture with a given composition is globally 
stable if the tangent line to the AgIRT curve, in the pertinent com- 
position, is below the A6IRT curve in the full composition range. 

Michelsen [lo] has suggested that the tangent plane criterion be 
replaced by a distance function from the tangent line in a composition 
analysis to the A6IRT curve. The tangent line at composition x i ,  for 
a binary system, is given by: 

A q  A G  
RT RT 

c@=xl-+x2-- 

where AE f indicates the partial mixing Gibbs energy of the mixture at 
the given composition. In addition, for every composition the mixing 
Gibbs energy can be calculated from its partial properties according to 

-- AZ AEl AE2 - x 1 - + x 2 -  
RT RT RT 

Thus the distance function for a stable mixture may be defined also as 

RT RT 

2 A 6  
i= 1 

The global stability constraint establishes that the tangent should be 
below the A5;IRT curve hence, the global stability criterion may be 
also written 

for every composition. Equations (17) and (22) show that the partial 
Gibbs energy function is a key property for stability analysis, and it 
can be calculated from thermodynamic models, as shown below. The 
partial Gibbs energy is defined in terms of fugacity as [15] 

dEi = RTd lnfi (23) 
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Integrating Eq. (23) from the pure-component state to that of the 
mixture yields 

J i  

where f 9 is a pure-component fugacity reference for the i-th compo- 
nent. In stability analysis f p may be selected as hypothetical or real, 
according to convenience, for each component, but care must be taken 
that it be the samefugacity reference for every phase in which com- 
ponent i could exist. From Eqs. (20) and (24) we have 

- A 5  - - E x ; -  AGi = C x i I n -  j ;  
RT ; RT f p  

In the applications that follow the global stability analysis will be 
illustrated for various cases of heterogeneous phase equilibrium. 

Stability and Liquid-Liquid Equilibrium in the y - y Approach 

In general, LLE is treated using activity coefficient models at low pres- 
sures. Using the Lewis and Randall reference state [15] the fugacity 
may be expressed as 

f; = Xi% J7 (26) 

where f;. is the pure component fugacity at the temperature and pres- 
sure of the mixture. As indicated before, a reference fugacityf; com- 
mon to every phase is required in order to apply the global stability 
analysis. An appropriate selection is f p = A ,  for which substitution in 
Eq. (24) yields 

- = ln[y;x;] AGi 
RT 

and the Gibbs energy of mixing is given by 

5" - 
AZ. 
- = EaG. = E x ; l n  [r;x;] = - + E x i  In xi RT ; RT ; RT ; 

(28) 
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Equation (28) is the required relation for the stability analysis of a 
liquid mixture and yields a continuous and unique AS/RT curve, due 
to the continuity of GE models on composition. 

Figure 8 shows an instructive construction of the LLE diagram us- 
ing global stability concepts. Various isotherms of the Ag/RT curve 
have been plotted and for each isotherm the equilibrium tangent has 
been determined, together with the equilibrium compositions. This pro- 
cedure allows to project equilibrium compositions in a T-x LLE dia- 
gram. Although this procedure is not very accurate it allows an easy 
visualization of the equilibrium behavior and its relation with global 
stability. In addition, it may be used for initializing rigorous calcula- 
tions that usually are nonlinear. 

Stability analysis is largely relevant for the correlation of immisci- 
bility data. Inspection of Figure 8 shows that the Ag/RT function in- 
flects at two compositions inside the range of immiscibility, as required 
from stability conditions for immiscibility equilibrium, however, more 
than two inflections are alsopossible. Examples of the this situation have 
been given for the NRTL model [16] by Guffey and Wehe [17], 
Heidemann and Mandhane [18], Katayama el al. [19], and by Mattelin 
and Verhoye [20]. Wisniak and Segura [21] have illustrated a similar 
situation for the Gothard equation [22,23]. It should be noted that 
NRTL is one of the models selected by the DECHEMA Chemistry Data 
Series [24] for correlating their experimental LLE database. In addition, 
Wisniak and Segura [21] have demonstrated the potential and flexibility 
of the Gothard equation for the treatment of common and extremely 
complex binary LLE data. 

The existence of multiple inflections in the A5;IRT function may 
give place to potential pitfalls, as discussed below. Considering Eq. 
(26), the condition of equal chemical potentials may be expressed as 

For a binary system the compositions of immiscibility meet the 
following relation 

ln- YP = ln- -4 
$ *  
72” 1 - 4  
Y[ 1 -xy 

ln- = ln- 
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FIGURE 8 A c / R T  diagram for a LLE in a y-y approach showing the relation with 
the pertinent equilibrium diagram. 

useful for correlating LLE. Equations (30) constitute a system of two 
equations, which may be solved in two unknowns parameters of a 
particular GE model [21]. However, Eqs. (30) represent only necessary 
conditions for phase equilibrium, they do not consider either intrinsic 
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or global stability. Figure 9a presents a pathologic example of a 
A g / R T  function with various inflections. The sign of the concavity 
requirement expressed in Eq. (18), indicates that compositions in the 
neighborhood of points B and D are intrinsically unstable; in addition, 
compositions in the neighborhood of points A, C and E are intrinsi- 
cally stable but not globally stable. Figure 9a shows all the possible 
tangents that may be drawn; all of them satisfy Eqs. (29) and (30). 
Nevertheless, only those tangents that touch the curve at compositions 
that are intrinsically stable (like A, C, E), represent intrinsically stable 
equilibriums. Tangents that touch the A z / R T  function in the neigh- 
borhood of point C are above the A G / R T  curve in some composition 
ranges, as shown in Figure 9a, thus violating global stability. There- 
fore, Figure 9a represents a unique global stable equilibrium which 

. . . . . . . . . . . unstable 
0 

metastable 
globally stable 

B 

- AG 
RT 

0.0 0.2 0.4 0.6 0.8 1 .O 

XI 

FIGURE 9a Ag/RT diagram showing various inflections and possible tangents satis- 
fying necessary phase equilibrium conditions. 
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XI 

FIGURE 9b LLE diagram correlation for the system furfural ( 1 )  + 2,2,5-trimethyl- 
hexane (2) using the NRTL model. Experimental data taken from DECHEMA Chemis- 
try Data Series [34] [o]. Model prediction avoiding srabiliry analysis [-I. 

appears in the tangent that joins points A and E. Globally stable 
immiscibility will be observed inside the composition range AE. 

The LLE data of the system furfural(1) + 2,2,5-trimethylpentane (2) 
[24] will be used to illustrate potential pitfalls which may be founded 
when fitting the data with the NRTL model, for example. For a binary 
system the NRTL model is 

where 

Gv = exp(-aijru); aij = aji 
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FIGURE 9c Stable LLE diagram prediction for the system furfural (1)+2,2,5- 
trimethyhexane (2) using the NRTL model. Experimental data taken from Syrensen 
and Arlt [34] [o]. Model prediction including stability analysis [-I. 

The model parameters are A12, A21, and a12. Eqs. (30) and the experi- 
mental immiscibility compositions may be used to solve Eqs. (31) and 
(32) for the two parameters AI2 and A 2 ] ,  if a constant value is assigned to 
aI2. Table I reports the values of these parameters for aI2 = 0.42. 
Figure 9b shows the ability of the NRTL model to predict the LLE of 
the system when only the necessary conditions of phase equilibrium 
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TABLE I 
( 1 )  + 2,2,5-trirnethylhexane (2)” 

Inappropriate NRTL fit parameters for the LLE of the system furfural 

Coeficient AnIR AziIR 
BO - 1.7830 x lo4 - 2.2551 x lo4 
B1 +2.3438 x 10’ + 3.3109 x 10’ 

B3 + 2.2463 x lo-’ + 3.8156 x 
B4 - 1.7621 x lo-’ - 3.1877 x lo-’ 

8 2  - 1.0874 - 1.7008 

AV/R = Bo + B ,  T +  B2T2 + B3T3 + B4T4 

‘data taken from DECHEMA Dnfo Series [24]. 

are satisfied, and Figure 9c shows the prediction when stability 
analysis is taken into consideration. The obvious conclusion is that the 
model and the fitted parameters predict a behavior that is not observed 
in the experimental data at low temperatures. Figure 9c shows that 
the Az/RT function presents multiple inflections, so that the equilib- 
rium diagram shown in Figure 9b, although depicting an excellent 
correlation of the data, is not globally stable in the low temperature 
range. 

Stability and Vapor - Liquid Equilibrium in the y - a$ Approach 

According to the y- 4 approach, VLE equilibrium compositions satis- 
fy the relation 

xiyi A = YidiP (33) 

where is the pure liquid fugacity given by 

sat sat f i =  Pi 4 i  ui (34) 

In Eq. (34) Pyt is the vapor pressure, 4 yt the pure component fuga- 
city coefficient at saturation conditions and ‘ui is the Poynting factor 
defined as 

In the 7-4 approach the fugacities of the vapor and liquid phases 
are independently modeled using virial EOS and GE models, according 
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to the following relations 

Therefore, selecting f p = fi as the reference fugacity, we obtain from 
Eq. (24) 

j 4  xiyifi 
f i  fi 

AGf = RTln+= RTIn- 

The pertinent Az/RT curves for each phase, written as functions of 
the composition xi, are 

It should be clear that Eqs. (38a) and (38b) are not equivalent func- 
tions of the composition; their evaluation at constant T and P will give 
a different Ac/RT curve for each phase. In addition, it should be noted 
that when the pressure increases, A 5  "/RT also increases (considering 
moderate pressures and conditions far from the critical range), 
indicating that at higher pressures the vapor phase becomes less 
stable, an observation consistent with the isothermal condensation of a 
vapor at the dew-point pressure. 

Figure 10 shows the values of Ac/RT and the equilibrium diagram 
for a VLE situation at a constant temperature T and pressure P'. The 
Ac/RT curves for the liquid and vapor phases appear in the upper 
region of the figure where it can be seen that each phase is represent- 
ed by its own AG/RT curve, as required by Eqs. (38a) and (38b). 
For every composition in the range A-E the curve AgL/RT is below 
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AZ? "/RT,  indicating that in this range the liquid phase is more stable. 
The vapor phase becomes more stable for compositions in the range 
E-D. In addition, every tangent line drawn to the lower A G / R T  
curve for compositions located in the range B-C, intersects the more 
stable A G / R T  curve at some composition (as shown by the tangent 
line F-G). From this we infer that the composition range B-C is not 
globally stable for a homogeneous phase. The liquid and vapor phase 
AZ?/RT curves meet the common tangent line at compositions B and 
C; thus phases of such compositions are in equilibrium, as discussed 
for Figure 4. Consequently, the composition range A - B represents 
homogeneous liquid mixtures, the range B-C is a range of global 
instability for homogeneous phases where VLE is present, and the range 
C- D represents homogeneous vapor mixtures. Furthermore, and as 
expected, the results of the stability analysis match exactly the 
conditions observed in the P* isobar in the VLE diagram projected in 
the lower region of Figure 10. 

As shown by the example in Figure 10, VLE introduces new fea- 
turesin the stability analysis, particularly the fact that phases of 
substantially different densities (in this case, liquid and vapor) are 
represented by dgerent A S / R T  curves. In addition, although global 
stability criteria apply straightforward, the case warrants further in- 
spection. For example, it is clear from Figure 10 that the A G / R T  curves 
of both liquid and vapors phases meet the intrinsic stability criterion 
expressed by Eq. (1 8) .  In principle, homogeneous vapor and liquidphases 
could exist in the whole composition range, although being metastable 
for some compositions. In the example under consideration the homo- 
geneous liquid phase is metastable in the composition range B - D and 
the homogeneous vapor phase is metastable in the range A-C. 
Furthermore, as compared with typical LLE cases, in VLE it is not 
necessary for the concavity of A g / R T  to change sign to induce a phase 
equilibrium state. 

Of particular interest in VLE stability analysis is the case of 
heteroazetropy where liquid - liquid immiscibility appears in addition 
to a vapor phase in equilibrium with both liquid phases. The typical 
case of heteroazetropy is shown in Figure 11 where two isobars 
(PI > P2) of the A S V / R T  curve have been plotted to show how the 
heteroazetropic diagram may be deduced from global stability argu- 
ments. The upper region of the Figure shows the A S / R T  plot and the 
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FIGURE 10 A@RT diagram for a VLE in a 7-4 approach showing the relation with 
the pertinent equilibrium diagram. 

lower region depicts the projected equilibrium diagram. Equations 
(38) indicate that only AZV/RT depends on pressure. AgL/RT may 
depend on pressure if GE considers functionality explicit in excess 
volumes, but usually this is not the case because at low pressures GE 
models depend only on temperature and composition. At the 
heteroazeotropic pressure P I  two liquid-phase compositions and one 
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FIGURE 11 
azeotropy. 

Ac/RT diagram for a VLE in a y-  $ approach showing a case of hetero- 

vapor-phase composition meet the common tangent line ABC, 
indicating that these compositions are in phase-equilibrium condi- 
tions. When the pressure is reduced to P2 it is possible to find two 
composition ranges, D - E and F - G, inside of which global instability 
is observed. The pertinent tangents give place to VLE in the two 
composition ranges D-E and F-G. 
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Liquid phase immiscibility at heteroazeotropic (and higher) pres- 
sures is a consequence of the inflection of AZ? L/RT. False and narrow 
immiscibility gaps may predicted by models when analyzing binary 
VLE data that exhibit large positive deviations from ideal behavior [25], 
affecting consistency analysis [2], data reduction, and multicomponent 
VLE predictions. Stability analysis should be used for testing the 
capabilities of particular models, in order to correlate adequately a 
particular set of data. An appropriate methodology may be to analyze 
the concavity of AZ? L/RT for the GEmodel fitted to the data. Changes in 
the sign of the AGL/RT curve concavity are indicative of immiscibility 
gaps and, if heteroazeotropy is not present in the experimental data, a 
model that shows inflections should be judged as inappropriate for 
correlation purposes. 

Stability and Phase Equilibrium in the +-+ Approach 

The 6-6 approach to phase equilibrium is related to an EOS being 
able or representing simultaneously vapor and liquid phases, the most 
common case being a cubic EOS of the van der Waals type. Such an 
approach may be used for representing every case of phase equilibrium 
between fluid phases, including critical transitions. Accuracy of the 
representation will depend mainly on the EOS selected and it’s mix- 
ing rules. In the 4-4 approach, the necessary condition of phase 
equilibrium may be expressed as 

where Jj  is the fugacity coefficient of a component in a mixture. The 
fugacity coefficient may be calculated from residual properties, defined 
as 

GR = k ( T ,  P )  - G i g ( T ,  P )  (40) 

In& is related to the partial residual Gibbs energy and may be cal- 
culated from volumetric data as follows [15] 

-1nZ (41) 
zi - 1 

T, nG, nj RT 
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In Eq. (41) Z is the compressibility factor and AIR is the residual 
Helmholtz energy which may be calculated from the relation [15] 

Equation (42) is particularly useful for an EOS of the form P = 

P(T, V,  n). Solutions of Eqs. (41) and (42) that can be applied to com- 
mon EOS and mixing rules for pure compounds, mixtures and for 
each of their components, appear in Appendix I. 

There are additional complications when an EOS is used to calcu- 
late fugacity coefficients. At a given T, P and composition, an EOS 
may give one or three real volumetric roots larger than the minimum 
packing volume or covolume. This root multiplicity is a consequence 
of the van der Waals loop and appears in every EOS derived from 
perturbation theories [14]. When an EOS gives three real roots larger 
than the covolume, the smallest represents a liquid-type root, the larg- 
est a gas-type root, and the central has no physical meaning because 
it violates the mechanical stability criteria: 

Equation (43) establishes a well-known compressibility property of 
a real fluid. Consequently, an EOS applied to pure components may 
give a multiplicity of fugacity coefficients, each one related to a par- 
ticular volume. Considering Eq. (41) and the definition of residual prop- 
erty given by Eq. (40), the pure component fugacity coefficient is 

Selecting the fugacity having the minimal value assures the lowest 
Gibbs energy and, as follows from stability considerations, such mini- 
mal fugacity coefficient may be associated to a stable phase (as pre- 
dicted by the EOS). Therefore, an appropriate selection for the pure 
component fugacity reference is: 

In 4: = min [In 4iI T, (45) 
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where [In di] represents the set of pure component fugacity coefficients 
obtained at a given temperature and pressure. 

In the 4-4 approach, the fugacity of a component in a mixture is 
given by 

for every phase (T = L, V ) .  Application of Eq. (46) to a pure compo- 
nent yields the pure component fugacity 

which may be selected as the reference fugacity ( f p  =fin). Therefore, 
considering Eqs. (47) and (46), Eq. (25) may be written as 

where 

for each phase, and is a pure component fugacity coefficient 
reference, all of them evaluated at same temperature and pressure. 
Equation (48) allows writing the Gibbs energy of mixing in terms of 
fugacity coefficients for each phase and, in addition, constitutes a cri- 
terion by which stability can be examined. An equivalent criterion is 
obtained from the distance of the tangent line to the Az/RT curve, 
as discussed in Eq. (22). Replacing Eq. (48) in Eq. (22) yields the sta- 
bility criteria, in terms of fugacity coefficients 

Equation (50a) represents a previous observation about Figure 7, 
the fact that a stable phase has a tangent that is always below the 
AC/RT curve. Hence, the stability criterion for the tested point with 
concentration x; has to be applied for all auxiliary concentrations xf  
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in the range 0 < xf < 1, separately for each phase, at the same tem- 
perature and pressure. Thus the difference between the A c / R T  curve 
and the tangent line for every composition point must be positive or 
zero, if the test phase of composition xf is stable, as indicated by 
writing the second equality in Eq. (50a), as follows 

Equation (50b) may be used now to test the stability of a particular 
phase for binary and multicomponent mixtures [lo]. 

The Soave modification of the van der Waals EOS [26] with classi- 
cal mixing rules, will now be used to illustrate some important facts 
regarding the test of global stability using EOS (results are con- 
ceptually similar for other EOS and/or mixing rules). We will consider 
a solution of ethanol (1) +water (2) at 373.15 K, using the critical con- 
stants and acentric factors given in Table 11. In addition, a zero 
interaction parameter (kU) will be used in the mixing rule. It should be 
pointed out that this is not a good approximation for the system, whose 
experimental data is not represented by the EOS under consideration 
with zero interaction parameter (in general this mixture cannot be well 
represented by standard cubic EOS with classical mixing rules, even 
when using non-zero interaction parameter. Advanced mixing rules 
are required for quantitative purposes). The phase equilibrium 
diagram predicted by the model is shown in Figure 12, where four 
isobars ( P A  = 50 kPa, P B  = 150 kPa, Pc = 240 kPa and PO = 300 kPa) 
have been selected to illustrate how the phases appear in a A c / R T  
diagram. Figure 13a shows the A c / R T  diagram for PA. 4: has been 
selected with Eq. (45) and three volumetric roots are obtained for the 
mixture in the full composition range, each one generating a A\G/RT 
curve (some values of the volumetric roots are given in Tab. 111). As 

TABLE I1 Pure component properties for the mixture ethanol (])+water (2)” 

Component 

I 
2 

5 16.20 63.83 0.6350 
647.30 220.48 0.3440 

aData taken from Reid el a/. [30]. 
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FIGURE 12 Prediction of vdW-S EOS for the system ethanol (l)+water (2) at 
373.15 K (&t/ = 0). 

shown by Figure 13a, for every composition A 2  '/RT yields the lowest 
values and we conclude that only the vapor phase is globally stable at 
373.15 K and PA, as confirmed by the phase equilibrium diagram given 
in Figure 12. Note that the central root yields always the largest values 
of AGIRT,  due to the instability condition expressed by Eq. (43). 
Figure 13b shows the isobar PB indicated in Figure 12. In this case we 
can plot the AZ! L/RT and AZ ' /RT curves, as well as a tangent, the 
latter touching AZ!'/RT and AZ!'/RT curves at the pertinent 
equilibrium compositions. This tangent corresponds to the VLE range 
shown in Figure 12 at PBl inside this range a single phase qualifies as 
globally unstable. The figure shows also the AZ!/RT curve correspond- 
ing to the central volumetric root; this curve again yields the largest 
A z / R T  values in the whole composition range and will be ignored in 
further analysis. Figure 13c shows the isobar Pc indicated in Figure 
12. In this case the curves A c L / R T  and A Z v / R T  intersect at two 
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FIGURE 13 
(b) PE; (c) Pc; (d) PD. 

A?;/RT plots for the various pressure levels shown in Figure 12. (a) PA; 
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FIGURE 13 (Continued). 
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TABLE 111 Compressibility factor roots for Figure 13a 

XI 
Liquid 

Z 
Central Vapor 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

0.0006 
0.0007 
0.0008 
0.0009 
0.0010 
0.001 1 
0.0012 
0.0013 
0.0014 
0.0015 
0.0016 

0.0039 
0.0042 
0.0046 
0.0049 
0.0052 
0.0056 
0.0060 
0.0064 
0.0068 
0.0073 
0.0078 

0.9960 
0.9957 
0.9953 
0.9950 
0.9946 
0.9942 
0.9938 
0.9934 
0.9929 
0.9924 
0.9920 

different compositions and two equilibrium tangents can be plotted. 
According to Figure 12, there are two ranges of VLE and, again, every 
composition between the equilibrium compositions corresponds to a 
globally unstable single phase. In addition, although A?; L/RT inflects 
(suggesting a clear case of immiscibility), the LLE is not globally stable 
at Pc because the corresponding tangent is above the VLE tangent, 
resulting in higher values of the mixing Gibbs energy. Finally, Figure 
13d shows the isobar PD indicated in Figure 12, where only LLE is 
observed. This time the AGV/RT curve appears above that of the 
liquid phase and thus the vapor phase is unstable. This result is 
obvious when the pressure is increased (below the critical range) 
because the vapor phase becomes unstable and eventually condenses. 
It should be noted that in going from Figure 13a to d the pressure 
increases, and that the vapor phase has higher Az/RT values, 
indicating that increasing pressures produce unstable vapors, as 
mentioned before. 

Considering Figure 13a again, it is seen that the AzL/RT curve 
inflects so that, in general, we can expect liquid immiscibility to be 
present. However, the vapor phase presents lower AG/RT values cor- 
responding to a globally stable phase. Independently of previous con- 
siderations, it is possible to obtain a false (or metastable) LLE when 
solving only the necessary equilibrium condition given by Eq. (39) and 
ignoring the stability test. Results of such a calculation appear in 
Table IV. 

Let us now to analyze how the criteria shown in Eq. (50b) can be 
applied avoid these false immiscible phases. At the composition of the 
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test phase is X* = xa and J may be evaluated for all possible com- 
positions and compressibility roots and the pertinent results are present- 
ed in Figure 14. It is seen that the test composition yields positive 
values for J when considering the “phase” represented by the central 
root, the same fact is observed when the liquid phase is analyzed. 
However, in the case of the vapor phase it is clear that the test com- 
position is not stable. A test phase or composition is globally stable if, 
and only if, all the possible values that J can yield for all the composi- 

TABLE IV LLE calculation at 373.15K and P = 50kPa (PA in Fig. 10) 

Component X0 x p  
(liquid a phase) (liquid p phase) 

Ethanol ( 1 )  0.0138 0.6356 
Water (2) 0.9862 0.3644 

3 

2 

1 

3 

0 

- 1  

-2 

\ 

- liquid-type root 
. . . . . . . . . . . gas-type root \ 

\ 
\ 
‘\ 

‘. 
central root ‘. 

-- ----____- _#/’ 
--- -- . -. ‘. 

x,* (test composition) 

. . -. . -. . -. , - . . - . . - . . . ~. . -. . - . -. . -. 

0.0 0.2 0.4 0.6 0.8 1 .o 
XI 

FIGURE 14 Application of the global stability criteria according to Eq. (50b). 
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tions andphases arepositive. This is not the case in Figure 14; hence the 
test composition is not globally stable. The stability assessment is 
directly confirmed by the phase diagram given in Figure 12 because at 
P A  = 50kPa no liquid phase exist. The LLE shown in Table IV is a 
metastable equilibrium state predicted by the model. 

According to Figure 12, when the pressure increases to PD, LL immis- 
cibility isobtained(thepertiment calculationinshowninTab. V).  Oneof 
the immiscibility compositions, xf, is tested now and the cor- 
responding stability analysis is shown in Figure 15. It is seen that 3 is 
always positive so the LLE can be declared globally stable. But if the 
same equilibrium composition is tested at 3 x 105kPa and 373.15K, 
it becomes unstable (see Fig. 16), indicating that LL immiscibility 
increases with pressure. Furthermore, as shown in Figure 16, the EOS 
predicts only liquid-type roots. Figures 13 to 16 include the main 
features that can be observed in the stability analysis with an EOS, 
results that in the subcritical range are not substantially different from 
those observed in the 7 - 4  approach. The only exceptions to the above 
rules are the way in which the reference value for the fugacity is selected. 
This example illustrates also some of the potential pitfalls which can be 
found when fitting interaction parameters to experimental data. For 
example, it is possible to obtain globally unstable LLE (as the case 
analyzed with PA)  by means of 4 - 4 calculations and although the model 
can smooth the LLE data in this range, such parameter fit is not correct 
because the EOS qualifies a homogeneous vapor phase as globally 
stable. 

The calculation of critical lines has acquired increasing interest af- 
ter the basic work of Van Konyenburg and Scott [4] because it al- 
lows assessment of the predictive capabilities of an EOS in the critical 
range and an excellent approach to the topology of phase equilibrium 
diagrams in the whole PVT range. Critical calculations are directly 
related to conditions of intrinsic stability, as follows from the classical 

TABLE V LLE calculation at 373.15 K and P = 3 bar (Po in Fig. 10) 

Component XQ XP 

(liquid (Y phase) (liquid p phase) 

Ethanol (1) 0.0138 0.6356 
Water 12) 0.9862 0.3644 
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- liquid-type root 
.......... gas-type root 

- .  1 

3 

0 

0.0 0.2 0.4 0.6 0.8 1 .o 
XI 

FIGURE 15 Stability test for a LLE of composition xf at 300 kPa. 

conditions of the critical point of mixtures. For a binary systems we 
have [27] 

The composition derivatives of the Gibbs energy given by Eqs. (47) 
can be related to Helmholtz energy derivatives using a Legendre 
transformation [6], yielding an equivalent set of non-linear equations 
which can be directly applied to an EOS of the form P = P (T, V,  n). 
However, Eq. (51) do not take into account global stability and 
constitute only necessary conditions. Complete critical calculations 
must be complemented with global stability analysis along critical 
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liquid-type root 

0.2 4 1 

-o.2 1 x, * (test cbmposition) I 

0.0 0.2 0.4 0.6 0.8 1 .o 
XI 

FIGURE 16 
300kPa) at 3 x 10’kPa. 

Stability test for a LLE of composition xf (immiscibility composition at 

lines. In order to illustrate this important point, we have calculated the 
critical lines of the system ethanol (1) +water (2) using the vdW-S 
EOS, with zero interaction parameter. The pertinent results appear in 
Figure 17. As mentioned before the model is not adequate for this 
system and will be used only for illustration purposes. According to 
Figure 17 the system is predicted as Type I1 in the classification of Van 
Konynenburg and Scott [4], showing a sharp range of immiscibility 
below the critical temperatures of both components. In contrast, 
experimental results indicate that the system ethanol (1) +water (2) is 
Type I, completely miscible and with a positive azeotrope ending in the 
critical range. Anyhow, it is of interest to study the global stability of 
the prediction. Critical line calculations using Eq. (51) yield two 
critical lines, a gas-liquid critical line that joins continually the 
critical points of the pure components, and a liquid-liquid critical 
line that represents the upper consulate temperature of the immisci- 
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bility shown in Figure 12, extending from zero to infinite pressure. 
Both critical lines satisfy the limit of intrinsic stability because they 
satisfy Eq. (51) but, obviously, liquid states become globally unstable 
as pressure decreases. Therefore, it is reasonable to assume that the 
LLE critical line cannot start from zero pressure. Table VI includes 
the coordinates of the critical immiscibility of points A, UCEP, (upper 
critical end point), and B whose stability analysis is shown in Figure 
18. As follows from Figure 18, the minimum pressure, which stabilizes 

250 

200 

7 150 
2 
X 

4 . 
a 100 

50 n : 
L 

I I 

350 400 450 500 550 600 650 

T J K  

FIGURE 17 Critical P - T  projection predicted by the vdW-S EOS for the system 
ethanol (l)+water (2) [kU = 01. 

TABLE VI 
ure 15 

Critical compositions of immiscibility along the LLE critical line in Fig- 

Point 

A 470.91 10.02 0.1675 
UCEP 470.31 21.99 0.1673 
C 469.68 50.18 0.1671 
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1.0 , 
liquid phase compressibility root 
vapor phase compressibility root 

-1.0 

- 0.6 

- 0.3 3,,, 

- 0.0 

0.0 0.2 0.4 0.6 0.8 1 .o 

XI 

FIGURE 18 Stability analysis along the LLE critical projection shown in Figure 17. 

a critical LLE, is the UCEP pressure, and the pressure range A-UCEP 
is metastable. 

Stability Analysis in Solid -Fluid Equilibrium 

Solid -fluid equilibrium is related with separation technologies where 
SFE becomes a potentially attractive purification alternative. This ap- 
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proach to separation problems is adequate with biological products, or 
with chemical species of large molecular weights that exhibit high 
boiling points, and usually decompose in normal distillation. Solutes 
of low volatility may be exposed to supercritical solvents, as carbon 
dioxide, at room temperature, avoiding thus thermal degradation. 

The equilibrium condition for the low volatile solid solute (identified 
as component 2) is written in terms of fugacity as 

where S, and fp denote the solid and fluid phases, respectively. The 
fugacity of the solid phase is given approximately by the fugacity of 
pure solid [28] where the miscibility of the solvent is negligible 

In Eq. (53) P l S  is the sublimation pressure and +yt and f s  are the 
fugacity coefficient and the molar volume of the pure solid at sub- 
limation conditions. The exponential term in the right-hand side of the 
equation represents the Poynting factor when the compressibility of 
the solid phase is neglected. A more rigorous approach can be 
obtained if the compressibility of the solid is known, but this kind of 
data is usually not available in the literature. The fugacity of each 
component in the fluid phase may be written 

where y2 is the solubility and ii is the gas phase fugacity coefficient 
which can be estimated from an EOS. The practical pressure ranges 
observed in supercritical extraction suggest the use of an EOS based 
on perturbation theories (such as a cubic EOS), instead of a virial EOS, 
for estimating gas phase fugacity coefficients. Combining Eqs. (53) and 
(54) and solving for the solubility yields 

Inspection of Eq. (55)  reveals that the solubility of the solute may 
increase in the fluid phase because the numerator depends exponen- 
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tially in pressure. This conclusion agrees well with the fact that a 
supercritical fluid has essentially a liquid-type volume and, therefore 
liquid-type properties at high pressures, so that its solvent capability is 
enhanced by increasing pressures. 

Equation (55) has been extensively used for correlating the experi- 
mental solubility of solids in supercritical fluids using EOS. The pre- 
diction capabilities of such a method have been recently discussed by 
Wisniak et al. [29] who have indicated that the complex topology of 
high-pressure equilibrium requires assessment of the stability of the 
predicted equilibrium. 

The pure component fugacity reference f p for component 1 (the 
solvent) may be selected as discussed in Eq. (45). Component 2, con- 
sidered as a pure component, will be usually present as a solid phase at 
the conditions of SFE, unless it exhibits the less-common regulation 
phenomena (i.e., depression of the fusion temperature with increasing 
pressure, as in the case of water). Therefore, a convenient pure-com- 
ponent fugacity reference for component 2 is given by Eq. (53) 
(f: = f g )  so that from Eq. (25) the Gibbs energy of mixing for the 
fluid phase is given by 

XI 61 x 2 4 2 p  is 
= X I  In- + x2 ln- - x 2  - ( P  - P:’) (56) 

A+ 
RT 4: P,”4?‘ RT 

for a binary mixture. In addition, considering that the solid phase is 
composed of a pure solute, its Gibbs energy of mixing is given by 

According to Eq. (57) A E S / R T  is a single point in the A G I R T  
diagram because the solid phase is pure. In contrast, Eq. (56) can be 
evaluated in the complete composition range. These two facts are re- 
presented in Figure 19 where A represents the A Z S / R T  point and line 
A-B is the equilibrium tangent. 

Since the solubility of the heavy solute in the fluid phase is usually 
low, the A G / R T  diagram is not useful or illustrate for stability analysis. 
This graphical difficulty may be overcome using the criterion given 
by Eq. (22). In particular, zero and positive minimum values(s) of 3 
will imply stability of the test phase, the composition of which may be 
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B 

0.0 0.2 0.4 0.6 0.8 1 .o 
Y I  

FIGURE 19 AG/RT plot for a solid-fluid equilibrium. 

taken as the solubility that satisfies the necessary condition of equilib- 
rium by Eq. (55) .  

Wisniak et al. [29] have pointed out that Eq. (55 )  can be readily 
solved for the value of the solubility using simple non-linear techniques. 
This situation contrasts with the complex topology of equilibrium 
diagrams that may occur in the neighborhood of the critical range. In 
order to illustrate these facts, and the potential pitfalls which may be 
found when predicting the solubility of heavy components in super- 
critical solvents, we have selected a fictitious system whose pure 
component properties are similar to those of the system carbon dioxide 
(1) + benzoic acid (2) (see Tab. VIII). Fugacity coefficients have been 
calculated by the vdW-S EOS [26] with quadratic mixing rules (Eq. (44)) 
and assuming a non-zero interaction parameter for the cohesion a term 
(ku = -0.10). In addition, properties have been reduced using the 
critical properties of the solvent (component 1 in Tab. VIII). 
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Figure 20 shows the solubility predicted for T, = 1.0026, a tempera- 
ture slightly higher than the critical temperature of the solvent, as 
recommended for SFE. The main features of the results are a mini- 
mum solubility at point A (the cricondenbar point, from which retro- 
grade condensation will be observed for higher pressures), and a 
drastic increase of the solubility in the neighborhood of the solvent’s 
critical point B. The latter is a consequence of the strong dependence 
of the fluid phase volume in the critical range. Figure 20, although a 
typical diagram for representing supercritical extraction data, masks 
of the real behavior present in critical equilibrium. 

The stability of point C in Figure 20 is analyzed in Figure 21. 
According to the 3 criteria, it is seen that the test composition is not 
globally stable because 3 shows a negative minimum at point A. Such 
an instability is not obvious in the equilibrium diagram shown in 
Figure 20. A detailed map of phases may be obtained from a P - T  

0.0 0.4 0.8 1.2 

p/pc ,  

FIGURE 20 Gas solid equilibrium diagram for the mixture in Table VIII (see text for 
conditions and explanations). 
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- 3’p 

test composition 
\ 

0.0 0.1 0.2 0.8 0.9 1 .o 

Y1 

FIGURE 21 Stability analysis for point C in Figure 20. 

projection of the mixture. In this diagram are represented all the 
equilibrium states that, according to the phase rule have one degree 
of freedom Figure 22a shows the P- T projection generated with the 
vdW-S EOS, using the indicated interaction parameter and the physi- 
cal properties given in Table VIII. According to Van Konynenburg 
and Scott [4] the mixture under consideration may be classified as 
Type V. However participation of solid phase incorporates a set of 
equilibrium states such as the gas-liquid-solid equilibrium (GLSE) 
and the liquid-liquid- solid equilibrium (LLSE), and an additional 
set of end points (LCEP’s and UCEP‘s, lower and upper end points), 
consequence of the intersection of solid -fluid equilibrium states with 
critical lines (for further explanation see [8, 291). Figure 22b depicts 
the details of Figure 22a in the neighborhood of the critical point of 
the solvent (component l) ,  where multiphase behavior becomes evi- 
dent. The temperature T, = l .0026 is also indicated in Figure 22b and 
it is clear that it appears in a multiphase supercritical region. Starting 
from the low pressure range this isotherm intersects first GLSE line, 
then the critical gas-liquid line which joins points (l)-UCEP3, after- 
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FIGURE 22a P- T projection for the mixture in Table VIII. 
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FIGURE 22b Details of Figure 22a in the neighborhood of the critical point of the 
solvent. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
0
0
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



324 H. SEGURA et at'. 

wards a LLSE line and, finally, it intersects the branch of the critical 
line which goes from LCEP to UCEPl, giving place to a sequential 
evolution of phases as the pressure goes up. 

A detailed inspection of the features of Figure 20 allows computa- 
tion of the stable equilibrium diagram in a wide range of pressures. 
The stable equilibrium diagram (Fig. 23) is characterized by two three- 
phase lines: lines ABC and EBF which represent the GLSE and the 
LLSE, respectively (discussed above for the PT projection in Figs. 22). 
In addition, two critical points are observed (as a consequence of 
isotherm T, intersecting two critical lines in Figs. 22); critical point J 
corresponds to a gas- liquid equilibrium (starting from the line ABC), 
and critical point I corresponds to a liquid - liquid equilibrium 
(starting from the line EFH). 

Comparison of Figures 20 and 23 indicates that stability analysis 
plays significant role in supercritical calculations and that it should 
never be ignored in the treatment of experimental data. 

1.4 

1.3 

pr 

1.2 

1.1 

1 .o 

0.9 

I 

H 

10-0 10-7 10-6 1 0 5  104 10" 10-2 10-1 100 

y2 

FIGURE 23 Stable equilibrium diagram for the example in Figure 20. 
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CONCLUSIONS 

The necessary and sufficient conditions for equilibrium states require 
that the Gibbs energy of a thermodynamic system reach a minimum. 
The Gibbs energy may present multiple minima, each one representing 
intrinsic stability, but global stability is related only to the absolute 
minimum. Global stable equilibrium implies that the same equilibrium 
state persists independently of how a thermodynamic system is per- 
turbed and then allowed to evolve to an equilibrium state. From a 
practical viewpoint, well-determined experimental phase equilibrium 
data are characterized by global stability andmust be modeledunder such 
a physical condition. 

The necessary conditions of equilibrium (Le., that the Gibbs energy 
yields a stationary point) do not take into account the problem of phase 
stability, being thus insuficient for predicting equilibrium states. When 
models are taken into consideration, these necessary conditions given 
place to non-linear equations, like Eqs. (29), (33), (39), (51) and ( 5 9 ,  
which are routinely solved for predicting equilibrium states. However, 
as shown in this work, the prediction of unstable equilibrium diagrams 
is a potential pitfall, possibility that should be also considered. The 
stability of equilibrium states is a significant part of the phase equilib- 
rium problem because it unequivocally reveals the physical validity of 
model predictions. 

In this work we have reviewed the application of a stability analy- 
sis to common cases of binary phase equilibrium in non-electrolyte 
systems. Independently of the pressure range, the model, or the num- 
ber of phases in equilibrium, stability analysis in binary systems allows 
a simple and direct graphical treatment that, in turn, is valuable of 
assessing data fitting or prediction by means of models. In addition, it 
is shown that stability analysis may be used for solving graphically 
complex phase equilibrium problems, allowing a rapid identification of 
multiphase equilibrium. 
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LIST OF SYMBOLS 

A 
a 
b 

G 
f 

GE 
G, 
k ,  

Q 

n 
P 

R 
S 

T 
U 

W 
x ,  Y 
Z 

sgen 

V 

Greek 

a, 
d 
Y 
A 
J 
11, 
7, 

P 

2, 

Helmholtz energy 
EOS cohesion parameter 
EOS covolume parameter 
fugacity 
Gibbs energy 
excess Gibbs energy 
NRTL parameter 
interaction parameter 
number of moles 
pressure 
heat 
universal gas constant 
entropy 
entropy generation 
temperature 
internal energy 
volume 
thermodynamic work 
liquid and vapor phase composition, respectively 
compressibility factor 

NRTL parameter 
fugacity coefficient 
activity coefficient 
mixing property 
stability function defined in Eq. (21) 
phase fraction 
NRTL equation parameter 
Poynting factor 
chemical potential 

Superscripts 

A auxiliary phase 
a, pertaining to immiscible liquid phases 
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* 
0 
sat 
L 
V 
S 

vs 
R 

fp 

ig 
N 

A 

pertaining to a test phase or to an heteroazeotropic point 
reference 
saturation property 
pertaining to liquid phase 
pertaining to vapor phase 
pertaining to solid phase 
pertaining to fluid phase 
sublimation transition 
pertaining to residual property 
ideal gas 
molar property 
partial property 
property of the component in the mixture 

Subscripts 

c critical property 
i ,  j component index 
I reduced property 

Abbreviations 

EOS 
VLE 
LLE 
SLE 
SFE 
vdW 
UCEP 
LCEP 

pertaining to an equation of state 
vapor - liquid equilibria 
liquid -liquid equilibria 
solid - liquid equilibria 
supercritical fluid extraction 
van der Waals 
upper critical end point 
lower critical end point 
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APPENDIX I 

Calculation of Fugacity Coefficients Using Cubic 
Equations of State 

A very convenient way to relate thermodynamics functions to the 
properties of real substances is to use cubic equations of state. Many 
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different forms of the EOS are reported in the literature, but the major- 
ity of them can be derived from the general cubic EOS proposed by 
Trebble and Bihnoi [31] 

RT a p=--  
i j  - b i j  + ( b  - C) i j  - bc - d2 

Trebble and Bishnoi indicate how parameter a, b, and c can be evalu- 
ated for each of the common EOS. All cubic EOS can be represented 
by the general form 

RT a p=-- 
v - b  ( 5 + e 1 ) ( 5 + e 2 )  

For the EOS of Trebble-Bishnoi we have 

b + c - d b 2  + 6cb + c2 + 4d2 
2 (C. 1 .I) el = 

b + c +  d b 2  + 6cb + c2 + 4 d 2  
2 (C.2.I) el = 

Assuming d = 0 in Eq. (A.1) yields the form of the EOS of Pate1 and 
Teja [32] where el and e2 become 

b + c - d b 2  + 6cb + c2 
2 (D. 1 .I) el = 

b + c + d b 2  + 6cb + c2 
2 

(D. 2. I) el = 

If, in addition, we assume that c = b, we get the form of the Peng and 
Robinson EOS [33] for which 

el = b( l  -A )  (E.l .I) 
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If c is assumed to be zero we get the form of the Soave modification 
of Redlich-Kwong EOS [34] with 

el = O  (F. 1 .I) 

el = b  (F.2.1) 

For the van der Waals EOS both el and e2 become zero. 
Fugacity coefficient may be calculated for the pure compound (4p), 

for the mixture (&,), and for each of its components (&). Applying 
Eqs. (36) and (41) to the general form of the EOS, Eq. (B.I), we get the 
following expression for 4, which is valid for calculation of 4 p and +,,,: 

(G.1) 
P5 P(5  - b )  a 5 + e2 1n4=--l1ln- + In I 
RT RT RT(e1 - e2) v + el 

The expression for the fugacity of the component in the mixture is 
more complex because it depends on the number of moles of the com- 
ponent (composition) and thus, on the mixing rule that is used to ob- 
tain the parameters a, b, c and d. Zielke and Lempe [35] have 
developed the following generalized expression for di that can be ap- 
plied to every cubic EOS (except van der Waals) and every mixing rule 

.. P5 P ( 5  - b) a + nda/ani 5 + e2 nbblbni 
ln4i=-- 1 -1n- + In-+- 

a 5 +  el el - e2 

RT RT RT(e1 -e2)  v + e l  v - b  

+ 
RT(e1 - e2)2 

ae2 ( ? + e l  el - e 2 ) ]  - n -  ln7-- 
ani v+e2 5+e2 

W.1) 

Equations (G.1) and (H.1) cannot be applied to the van der Waals 
EOS, because for it el  and el  are equal to zero. The solution for 4, and 
4 the van der Waals EOS can be found in the book by Walas [36]. 

When using Eq. (H.1) care should be taken to calculate the partial 
derivatives for component i assuming constant temperature, volume, 
and number of moles of all other component of the mixture. For ex- 
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ample, assuming a quadratic mixing rule for parameter a and a linear 
rule for all other parameters, yields the following expressions 

db n- = bi; - b 
dni 

A computer program written for Mathematica 3, for performing glob- 
al stability tests using different EOS, is available from the authors. 
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